A Study of Preconditioners for Network Interior Point Methods

نویسندگان

  • Joaquim Júdice
  • João Patrício
  • Luis F. Portugal
  • Mauricio G. C. Resende
  • Geraldo Veiga
چکیده

ABSTRACT. We study and compare preconditioners available for network interior point methods. We derive upper bounds for the condition number of the preconditioned matrices used in the solution of systems of linear equations defining the algorithm search directions. The preconditioners are tested using PDNET, a state-of-the-art interior point code for the minimum cost network flow problem. A computational comparison using a set of standard problems improves the understanding of the effectiveness of preconditioners in network interior point methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An annotated bibliography of network interior point methods

This paper presents an annotated bibliography on interior point methods for solving network flow problems. We consider single and multicommodity network flow problems, as well as preconditioners used in implementations of conjugate gradient methods for solving the normal systems of equations that arise in interior network flow algorithms. Applications in electrical engineering and miscellaneous...

متن کامل

Updating Constraint Preconditioners for KKT Systems in Quadratic Programming Via Low-Rank Corrections

This work focuses on the iterative solution of sequences of KKT linear systems arising in interior point methods applied to large convex quadratic programming problems. This task is the computational core of the interior point procedure and an efficient preconditioning strategy is crucial for the efficiency of the overall method. Constraint preconditioners are very effective in this context; ne...

متن کامل

Preconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization

A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...

متن کامل

Inexact Jacobian Constraint Preconditioners in Optimization

In this paper we analyze a class of approximate constraint preconditioners in the acceleration of Krylov subspace methods fot the solution of reduced Newton systems arising in optimization with interior point methods. We propose a dynamic sparsification of the Jacobian matrix at every stage of the interior point method. Spectral analysis of the preconditioned matrix is performed and bounds on i...

متن کامل

A Numerical Study of Active-Set and Interior-Point Methods for Bound Constrained Optimization

This papers studies the performance of several interior-point and activeset methods on bound constrained optimization problems. The numerical tests show that the sequential linear-quadratic programming (SLQP) method is robust, but is not as effective as gradient projection at identifying the optimal active set. Interiorpoint methods are robust and require a small number of iterations and functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2003